

Hearing Aid Fitting

"The goals of prescription are to improve the ability to hear and thereby facilitate the development of sensory and perceptual skills, receptive and expressive language, speech production and literacy, academic performance, and social-emotional growth."

~Carney & Moeller, 1998

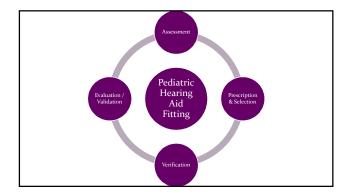
Babies are not Small Adults

Early hearing loss impacts communication development • Maximize critical period

Small ears that are growing

Account for changes in ear canal acoustics

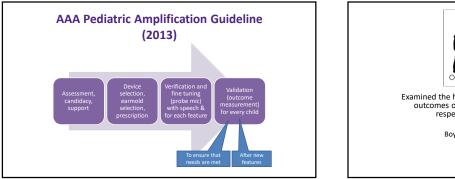
Depend on caregivers for hearing aid use • Cannot provide verbal feedback

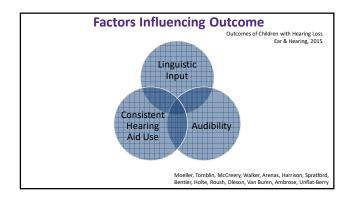

Early Hearing Detection & Intervention Programs

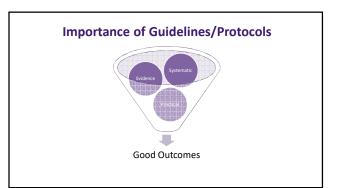
Goals:

- Identify infants with hearing loss and define the impairment by 3 months corrected age
- Initiate intervention by 6 months corrected age

Meeting the Goals


- Evidence-based protocols exist for: - thorough assessment of hearing in infants
 - accurate and suitable hearing instrument fitting in infants
- Technology exists for:
 - determining the degree, type, and configuration of hearing loss in infants
- ensuring safe, comfortable, and appropriate levels of sound for infants with hearing loss


Provision of Hearing Aids


- Suitable technology and evidence-based hearing aid fitting guidelines and protocols support accurate and safe hearing aid fittings for the pediatric population
 - American Academy of Audiology, 2013
 - Australian Protocol; King, 2010
 - British Columbia Early Hearing Program, 2006
 - Modernizing Children's Hearing Aid Services, 2005
 - Ontario Protocol; Bagatto, Scollie, Hyde & Seewald, 2010; Updated in 2014: www.delia.com

– JAAA Special Issue March 2016

Essential Element: Complete Assessment

- Description of hearing in each <u>ear is required</u> prior to proceeding with hearing aid fitting

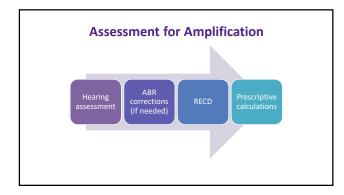
 Degree, configuration, type
- Estimation of thresholds with air- and bone-conducted stimuli for at least two frequencies per ear
 - Include case history, otoscopic examination, immittance, diagnostic OAEs

Essential Element: Inserts for Assessment

- Use insert earphones for infant hearing assessment whenever possible
- It is more accurate and compatible with the target population

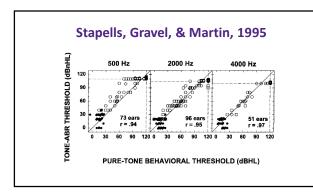
<figure><section-header><figure><figure>

Infant Hearing Assessment


Infants under 6 months of age cannot perform behavioural hearing test

Audiological Evaluation: 0-6 months

- Estimates of hearing sensitivity are derived from FS-ABR measurements
- Hearing aid selection and fitting proceeds using ABR threshold estimates
 - Intervention is not postponed for collection of behavioural data

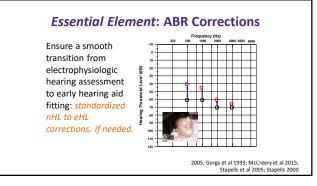



ABR vs. Behavioural Results

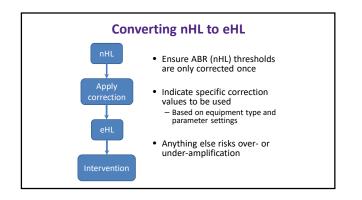
ABR threshold estimates (in *dB nHL*) have been shown to be higher than behavioural thresholds (in *dB HL*)

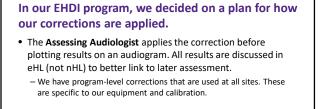
e.g., 10 – 20 dB in children with SNHL

Stapells et al 1995 Stapells 2000 Picton et al 1979

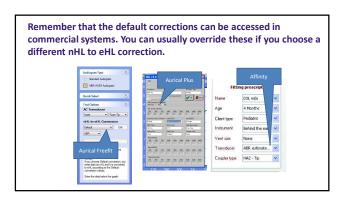

Estimating Infant Hearing Thresholds from the ABR

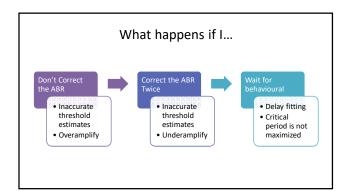
- ABR corrections are impacted by collection parameters, calibration, frequency, and differences between assessment strategies (e.g., electrophysiological vs behavioural)
- Inappropriate adjustments to ABR thresholds can lead to poor hearing aid fittings
 - Underestimation will lead to poor speech access
 - Overestimation will lead to exposure to unnecessarily high sound levels

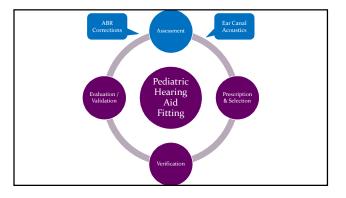

Tomblin et al 2014; Macrae 199

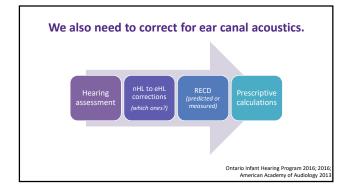

A Clinical Solution

- For some ABR protocols, corrections from nHL to *Estimated Hearing Level (eHL)* are needed before intervention decisions are made
- The corrected nHL value represents a behavioural threshold (eHL) for the purposes of intervention




		AIR CO	BONE CONDUCTION			
Frequency (Hz)	0.5k	1k	2k	4k	0.5k	2k
Minimum Level (dBnHL)	35	35	30	25	25 <1 yr 30 ≥1 yr	30
Correction Factor	-10	-10	-5	0	0	-5
Correction f esti	actors are nates of					obtain


• The Amplification Audiologist is trained that the corrections should already be done (so that it doesn't happen twice!).

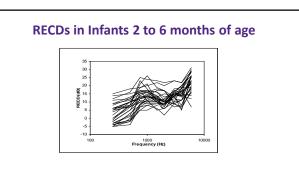


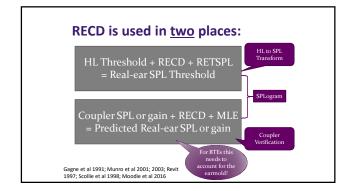
Take Home Message

- The most important thing is to use a correction at all.
- The second most important thing is to make sure it is not applied twice. Who will do it and how?
- The third most important thing is to use a correction that is appropriate for your system and collection parameters.

Insert earphones are the preferred transducer for infant assessments.

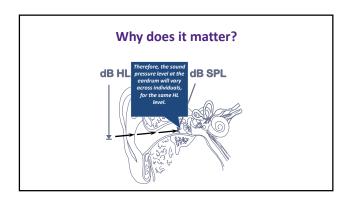
- It is more accurate and compatible with the target population
- Connect inserts to *personal earmolds* for follow-up audiograms
- Better retention and acceptance
- Sets you up for a more accurate hearing aid fitting
- Earmold Audiogram
 Earmold RECD

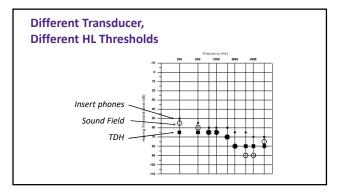


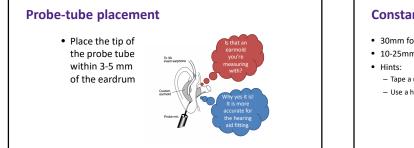

The RECD is a set of values that describe the acoustic characteristics of an occluded ear canal.

- Difference between SPL in a coupler and SPL your patient's ear canal
- Highly variable, especially in infants under 12 months of age
- Best practice for pediatric hearing aid fitting guidelines and protocols

 Earmold coupling recommended






Measure Ear Canal Acoustics to Individualize Hearing Aid Fitting

- Real-ear measurements allow us to do this – Protects against errors in the fitting
- Real-ear measurement takes two forms:
 <u>Real-ear verification</u>: Place the probe tube, verify hearing aid output in the ear.
 - <u>Coupler verification</u>: Same thing, but in a coupler with predictions to the real-ear. Common practice for pediatrics.

Constant Insertion Depth

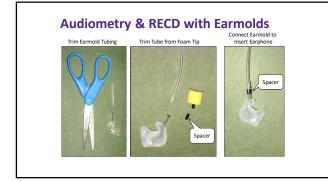
- 30mm for adult males, 28mm for females
- 10-25mm for infants/children
- - Tape a ruler to your desk

10 mm 28 mm

- Use a highlighter to mark a few depths along it

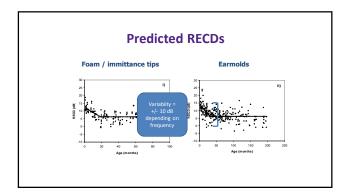
Customized Insertion Depth

• Identify the ridge of the earmold or hearing instrument corresponding to the location of the intertragal notch

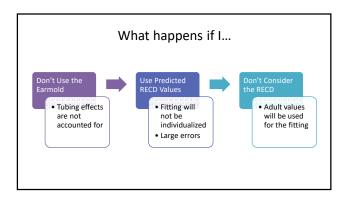


• Lay the tube along the bottom of the earmold

Customized Insertion Depth

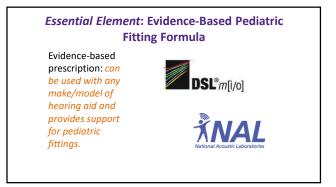

- If you have some clear wrap or soft surgical tape, connect the probe tube to the earmold and insert it simultaneously
- To the active toddler, this may seem like you are only inserting the earmold

Variable Ear Canal Acoustics


- Large variability in ear canal SPL across infants and young children - Kruger 1987, Feigin et al 1989, Bagatto et al 2002
- Must account for this variability in both audiologic assessment and in hearing instrument fitting

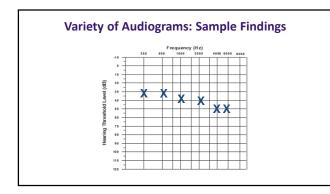
How often should RECDs be measured?

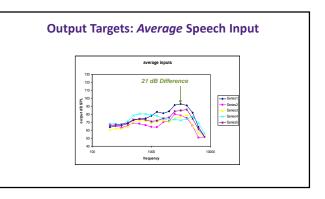
Each child's RECD values should be measured at the time of the initial fitting and monitored over time whenever possible

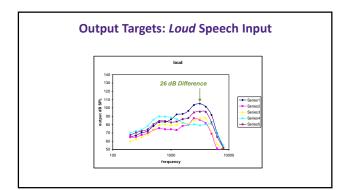

Rule of thumb: Measure RECD whenever the earmold changes

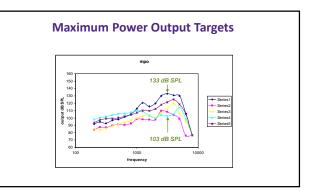
Take Home Messages

- A measured RECD is necessary for an accurate description of your patient's ear canal which individualizes the hearing aid fitting
- RECDs are used to convert HL to SPL AND to allow for couplerbased verification
- Measuring audiometry AND the RECD with the earmold is best practice
- Predicted RECDs may be considered as a Plan 'B'

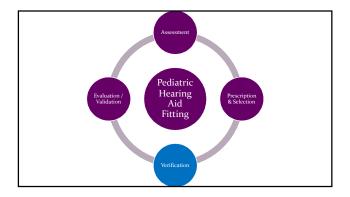

Objectives of Early Amplification


- Provide amplified signal that is audible for various input levels
- Avoid distortion
- Ensure availability of sounds across a broad frequency range
- Allow for sufficient electroacoustic flexibility


 To account for changes in ear canal acoustics and/or auditory characteristics


How similar are proprietary algorithms for fitting infants and young children ?

Seewald, RC, Mills, J, Bagatto, MP, Scollie, SD & Moodie, ST. (2008) A comparison of manufacturer-specific prescriptive procedures for infants Hearing Journal, 61(11):26, 28, 30, 32, 34.



Listening Needs of Children with HL

- Children often experience hearing loss before or during the critical period of speech and language learning
- Children with hearing loss require more speech audibility than adults or children with normal hearing
 - E.g., Elliot, 1979; Gravel et al, 1999; Kortekaas & Stelmachowicz, 2000
- Children with hearing loss require more gain, a higher SNR and broader audible bandwidth of speech

Essential Element: Evidence-Based Pediatric Fitting Formula

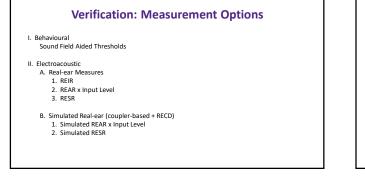
- Specific characteristics are required when fitting hearing aids to children:
 - Implementation of thresholds estimated from electrophysiological tests
 - Ability to account for ear canal acoustics
 - $-\operatorname{Age-specific}$ normative data for predicting ear canal acoustics
 - Methods to support conducting coupler-based verification
 - $-\operatorname{Accounts}$ for specific listening needs of the pediatric population

Essential Element: Real-ear Verification

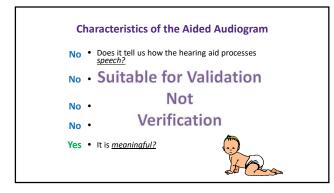
Set the hearing aid for the infant **in the coupler**, focusing on the long term levels of conversational speech: verify every hearing aid, and fine tune to target. Use speech-based equipment.

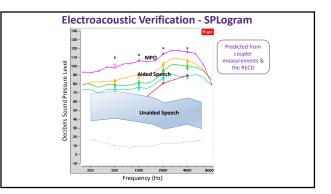
Why Verify?

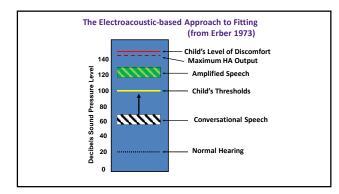
To provide the best possible fittings.

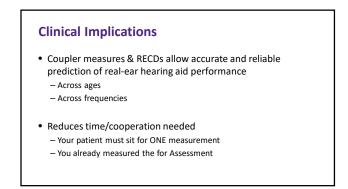

"The responsible audiologist wants to know as much as possible about the levels of amplified sound that hearing instruments deliver into the ears of infants and young children. To this end, the audiologist must apply comprehensive and evidence-based verification strategies that are compatible with the characteristics and capabilities of this unique population. This is because the long-term implications of the fitting decisions we make are simply too important."

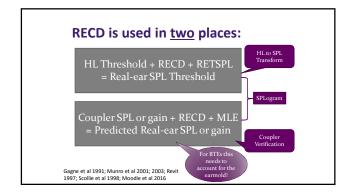
~ Richard Seewald

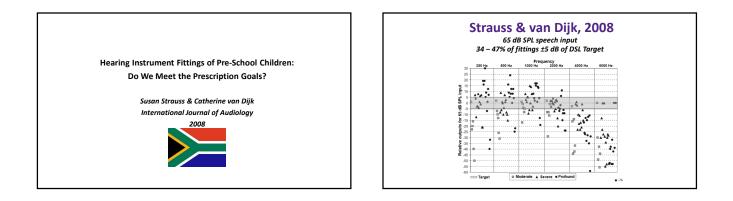

Goals for Verification

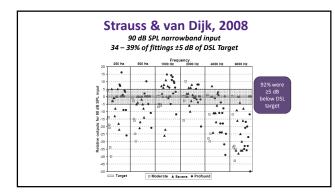

Accuracy & reliability
Electroacoustic verification in the coupler

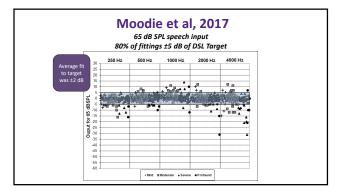

- ✓ Speech-like levels & MPO
- ✓ Infant-friendly procedures
 There should be no requirement to sit up or respond behaviorally
- Meaningful displays
 dB for dB comparison to thresholds & upper limits

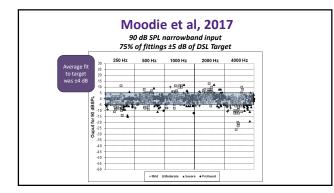


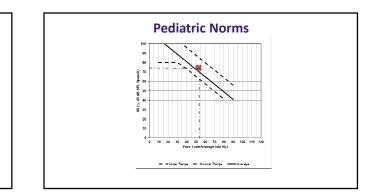


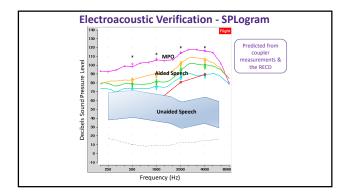


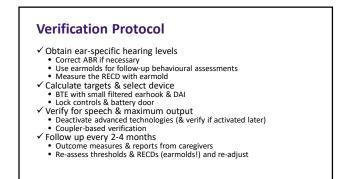


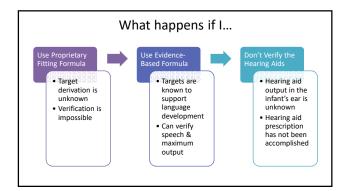




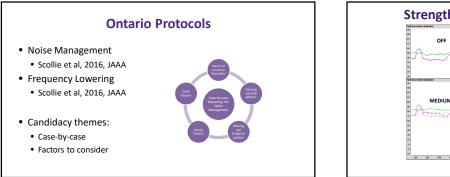


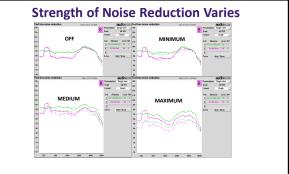


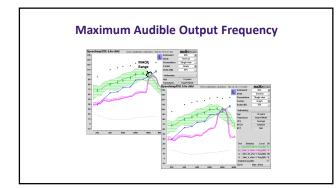

Good Consensus on Fitting							
Fitting & verification	Canada	US	UK	Australia			
Prescription	DSL v5.0	DSL or NAL-NL	DSL or NAL-NL	NAL-NL1			
Measured RECD	Yes	Yes	Yes	Yes			
Coupler-based verification	Yes	Yes	Yes	Yes			
Broadband or speech signals	Yes	Yes	Yes	Yes			

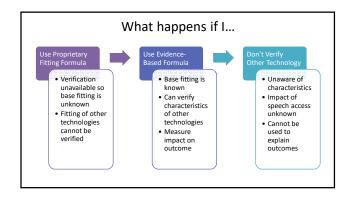

Other Analyses

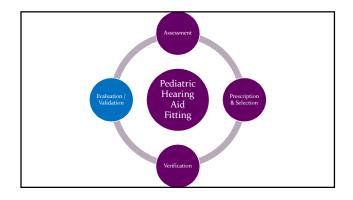
- The Speech Intelligibility Index (SII)
- An updated version of the Articulation Index (AI), standardized in 1997
- How to interpret:
 - 0 means no speech is audible
 - 1 means 100% is audible
 - This doesn't mean that 100% will be heard correctly.











Take Home Messages

- RECDs are used to convert HL to SPL AND to allow for couplerbased verification
- Simulated REAR (in the coupler) is a valid way to assess hearing aid performance for children
- Consider other hearing aid technologies (noise reduction, frequency lowering) on a case-by-case basis
- If activated, verify the characteristics, impact on audibility and benefit
- This is most effective when starting with an evidence-based fitting formula

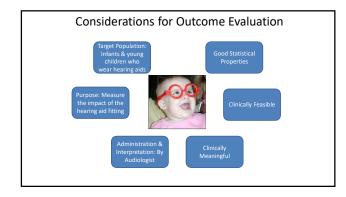
Essential Elements: Outcome Evaluation

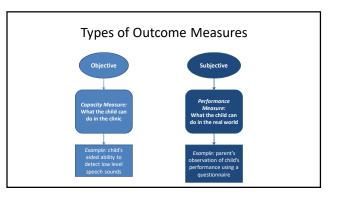
At regular intervals, use age-appropriate outcome measures to assess the impact of the fitting: *demonstrates progress for the infant*

in the early stages of hearing aid use; continue to monitor throughout process.

Joint Committee on Infant Hearing Goal 6:

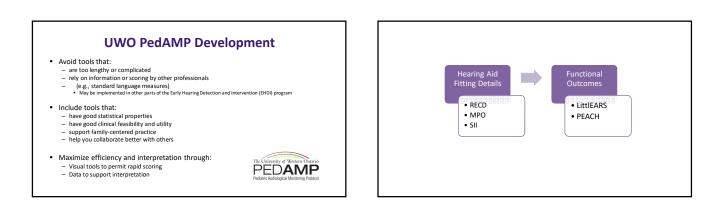
"All children who are D/HH should have their progress monitored every 6 months from birth to 36 months of age through a protocol that includes the use of standardized, norm-referenced developmental evaluations..."

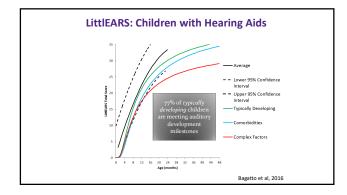

~ JCIH, 2013

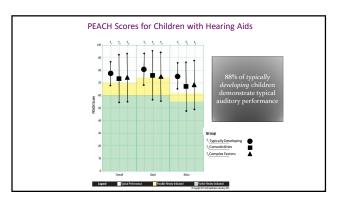

Clinical Need

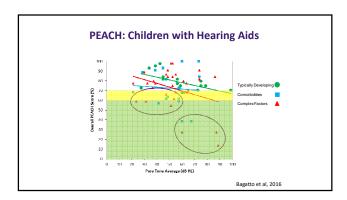
Pediatric audiologists who fit young infants with hearing aids need tools to measure the impact of the hearing aid on the child's auditory development

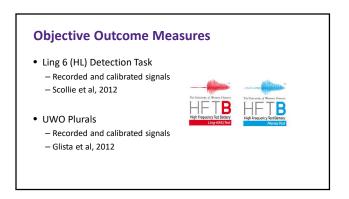
Program Need

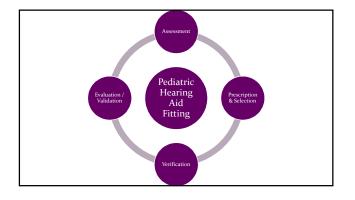

Early Hearing Detection and Intervention (EHDI) programs need tools to assess the overall quality of the program

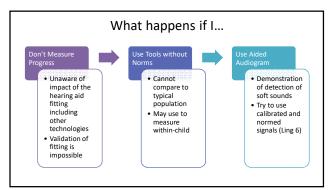


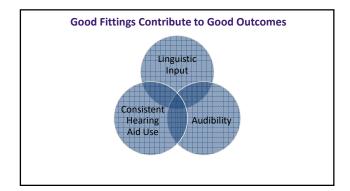





Contents of the UWO PedAMP						
Tool	Purpose	Description				
Amplification Benefit Questionnaire	 Acceptance & use of hearing aids Satisfaction with services 	11 items 5 point rating scale				
Hearing Aid Fitting Details	 Quality of hearing aid fitting 	RECD, MPO, Speech Intelligibility Index (SII)				
LittlEARS Auditory Questionnaire Tsiakpini et al, 2004	 Receptive & semantic auditory behaviour Expressive vocal behaviour 	35 items Yes/no response				
Parents' Evaluation of Aural/Oral Performance of Children (PEACH) Ching & Hill, 2005	 Communication in quiet & noise Responsiveness to environment 	13 items 5 point rating scale				







"As caring and committed professionals, we must be vigilant about the possible audiological pitfalls that could be encountered during the confirmation of a child's hearing loss, as well as during the audiological monitoring of that loss in the longer term."

~Judith S. Gravel

